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Abstract— We describe an immersive visualization system for structural
biology using real-time load balancing of virtual reality and haptic render-
ing. In structural biology a variety of image reconstruction techniques are
employed to determine geometric aspects of large macromolecular assem-
blies at various levels of resolution. Hybrid modeling techniques are the
most promising approach to bridge the resolution gap between data from
different biophysical origins. Here we present an interactive solution for
the multi-resolution modeling problem that employs a novel load-balancing
scheme for the visual and haptic rendering. During critical load conditions
the error metric of a dynamic mesh simplification technique is coupled to
the force-update rate of the kinesthetic feedback, thereby providing an in-
stantaneous adaptation of the rendering to the modeling efficiency. This
enables the construction of nano-scale bio-molecular architectures while
avoiding unwanted haptic blackouts during peak modeling demand. Com-
bined with various molecular rendering techniques, adaptive visuo-haptic
rendering is embedded in our graphics system "SenSitus".

I. I NTRODUCTION

The structure and function of macromolecular cellular ma-
chines [1] are routinely investigated in concurrent biology and
medicine. Most fundamental cellular processes involve the ac-
tions of nano-scale bio-molecular assemblies in a precise and or-
ganized way. The mechanism of such a machine can be defined
by the dynamic states of all its components in their correct time
sequence. The complexity and size of molecular assemblies and
the large number of conformations make it unlikely that all the
states can be observed directly at atomic resolution. Electron mi-
croscopy (short EM) is a powerful technique to gain information
about the entire macromolecule in a variety of conformations,
but the volumetric data sets generated at the end of the image re-
construction process typically feature only spatial resolutions of
around 20Å. Identifying structures at atomic resolution within
the low-resolution EM map would enable a detailed understand-
ing of macromolecular interactions.

A. Algorithmic Solutions

Within the past decade, multi-resolution molecular modeling
has emerged as a powerful strategy to bridge the resolution gap
between crystallographic high-resolution structures and EM vol-
umetric maps. The atomic structure of the entire assembly is
constructed by docking probe molecules into the low-resolution
volumetric map, following a successive “building-block” strat-
egy. An example can be seen in Fig. 1, where six high-resolution
atomic structures (protein data bank [2] entry 2REC) are fitted
into a helicase volumetric map [19].
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Fig. 1. Multi-resolution molecular modeling: Six high-resolution monomeric
structures docked into a volumetric map. The monomers are encoded by
different colors and represented by theCα atoms of the poly-peptide chain.

Computational biology research groups have proposed sev-
eral algorithmic solutions to the 3D multi-resolution modeling
problem [17]. The majority of the matching algorithms adopt
voxel-oriented techniques based on the correlation coefficient
[16], [11], [13] as a fitting criterion. Typically an exhaustive
search is carried out that maximizes the cross-correlation

C(R,T) =
∫

ρem(r)ρcalc(r ,R,T)dr (1)

between the low-resolution EM mapρem (target) and the low-
pass filtered mapρcalc derived from the atomic structure (probe).
Although successful, this approach of fitting the probe to the
target suffers from the ambiguity of the correlation coefficient
and is thereby not applicable to all problem settings [17].

The multi-resolution docking can also be done visually [8]
by exploiting the shape similarity of the two objects. Although
advanced graphics workstations are able to render the data sets
interactively today, the shape comparison is still a challeng-
ing task for the human visual system because of the complex
three-dimensional structure of the objects. Therefore the dock-
ing process is complicated and time-consuming for large macro-
molecular systems.

B. Interactive Interior Docking

We proposed in [3] to utilize the human tactile sense to com-
municate information about the quality of matching the data to
the user. In our solution the gradient of the cross-correlation
coefficientC (Eq. 1) is used as potential function for the force



calculation of the kinesthetic feedback. The resulting force and
torque guides the user towards a better fitting location and ori-
entation in the sense of a higher correlation of probe and target.
The user simultaneously maximizes the shape similarity crite-
rion by visual docking, which in turn alleviates the ambiguity
problem of the correlation coefficient.

In practice, the kHz force-update rate required for a high-
quality haptic rendering [4] prohibits a straightforward imple-
mentation of this idea. The calculation of the cross-correlation
coefficient is too expensive to be employed in a real-time setting
with the required rate. To reduce the computational complexity
we utilize a topology representing network (TRN) [10], [3]. The
TRN performs a clustering of 3D data termedvector quantiza-
tion, where the molecule is represented by so-calledcodebook
vectorswi (see Fig. 2).

Fig. 2. Atomic structure represented by sets of 10, 20 and 40 codebook vectors
(perspective view)

GivenN codebook vectorswi , we approximateρcalc (Eq.1) by
a sum of Dirac delta functions:

ρcalc(r ,R,T)≈
N

∑
i=

δ (r −wi(R,T))

which leads to the following simplified form of the correlation
coefficient:

C(R,T) =
N

∑
i=1

ρem(wi(R,T)) (2)

The reduced criterion (Eq. 2) performs well for numbersN
that are 2-3 orders of magnitudes lower than the number of atoms
of the probe molecule [3]. The simplified coefficient is then used
as a potential function to calculate a force and torque acting on
the probe molecule. It can be shown that the force acting on the
center of mass (COM) of the rigid-body is equal to the gradient
of the EM density sampled at the codebook vector positions

F =
N

∑
i=

∇ρem(wi(R,T)),

and the torque acting on the COM can be computed in a sim-
ilar manner

Q =
N

∑
i=

wi(R,T)×∇ρem(wi(R,T)),

where “×” denotes the vector cross-product. The rotationR
and the translationT are parameters measured by the sensors of

the haptic device, as the molecule is moved about interactively
by the user.

With the simplified coefficient we are able to achieve force-
update rates of> 2 kHz for test data sets quantized withN = 200
codebook vectors, using a standard dual CPU personal computer.

C. Mesh Simplification

The combination of the before mentioned haptic rendering
with an immersive visualization of the data sets introduces a
competition for the available processor time. Haptic and visual
rendering are real-time processes and the quality of both suffers
significantly if the refresh rates drop below a critical level. As
mentioned before, a force updates per second (short FUS) rate of
around 1 kHz is necessary to generate a high-quality haptic ren-
dering [4]. Similarly, the visual rendering in an immersive vir-
tual reality environment is more demanding than in a standard
workstation setting, and refresh rates of around 30 frames-per
second (short FPS) are required for a realistic visual perception.

In this work we utilize a mesh simplification algorithm for a
load-balancing scheme of the haptic and visual rendering. We
will develop an adaptive version of the algorithm that allows us
to adjust the complexity of the triangular mesh according to the
current force-refresh rate of the kinesthetic feedback. Thereby
we can avoid a dominant usage of computer resources by the
visual rendering and ensure the generation of high-quality force-
feedback.

II. A DAPTIVE MESH SIMPLIFICATION

A variety of simplification schemes have been proposed for
triangular meshes in the past. One can broadly group these al-
gorithms into three different categories: vertex clustering [12],
vertex decimation [14] and edge contraction [7]. Vertex cluster-
ing can be very fast and offers a global error bond based on the
grid the vertices are divided into, but the quality of the meshes
can be quite low. Vertex decimation can produce a very accurate
approximation, but the process is often slow and only applicable
to manifold surfaces.

In this paper we employ a pair contraction algorithm, based
on Garland and Heckbert’s work [6]. Their algorithm seems to
be ideal for our application as it offers generality, high quality
approximation and a fast simplification process. Following the
algorithm, we contract two vertices and replace them by a single
new vertex, which will result in a simplification of the mesh. To
maintain a high-quality approximation a cost function is utilized
to select the next contraction pair. To define this cost function we
employ a quadric error metric to describe the error at a certain
vertex, based on the distance of the vertex to the surface of the
mesh. The error metric serves as an energy function with the
optimal new vertices - resulting from the vertex contraction -
located at the valleys of the energy landscape.

To find possible candidates for the contraction step, we first
compile a list of valid vertex pairs. In addition to vertices that
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Fig. 3. Model with open boundaries - (a) original model (1250 vertices), (b) and (c) w/o boundary protection (100 and 8 vertices), (d) and (e) with protection (100
and 8 vertices)

share an edge we include also vertices

‖v−v‖< t

that enable support of non-manifold surfaces (the above crite-
rion can also be interpreted as adding an “imaginary” edge). The
parametert should be selected carefully, as a high value would
lead toO(n2) pairs.

In a next step we develop a measure based on the vertex dis-
tance to the original surface, in order to select a candidate pair
for the contraction. Therefore we define the QuadricQ of a vec-
tor v =(x,z,y,1)t as the sum of the quadric distance between
the vertex and a set of planes, defined byni = (a,b,c,d)t with
nt

i x = 0:

Q(v) =
k

∑
i=1

(nt
i v)2 = vtQv

which leads to a cost function for each vertex. The set of planes
is defined by the triangles that meet inv. To describe the cost
of a certain vertex pair, we choose an additive rule to model the
case of a contraction(v,v)→ v̄:

Q̄ =Q +Q

This simple rule follows the idea that the cost function of the
new vertexv̄ depends on the planes defined by the two vertices
v andv - the larger the distance of̄v to the original surface, the
more expensive the contraction(v,v)→ v̄ would be. The final
cost valueQ(v̄) used for a ranking of the vertex pair depends on
the concrete vertex̄v, which is so far still undefined. The optimal
vertexv̄ is the vertex for whichQ(v̄) gets minimal, leading to the
following linear problem:

q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

0 0 0 1

 v̄ =


0
0
0
1


If the matrix is not invertible, a reasonable approximation for
the optimal vertex can be found on the edge betweenv and
v. The procedure is used to acquirev̄ and the corresponding
quadricQ(v̄) for all the vertex pairs. The simplification process
selects the best vertex pair for the contraction, relying onQ(v̄)
as criterion.

A. Boundary Protection

Here the described algorithm is applied to general triangular
meshes, that in structural biology often result from an isosur-
face generation. It is not unusual that these meshes exhibit open
boundaries, but in this case the standard form of the algorithm
will fail to preserve the shape of the object. As the edges at the
boundary are only part of a single triangle, they are very likely
early candidates for the contraction, resulting in a zig-zag ap-
pearance of the borders of the model.

To protect the boundaries we introduce an imaginary plane at
the verticesvi andv j , if the edge(vi ,v j) is only part of a single
triangle. The imaginary plane is perpendicular to the existing
triangle, such that the quadric error metric will tend to move the
new verticesv̄ towards the boundary and thereby preserve the
overall shape of the object. If the triangle atvi , v j features the
normal vectorn, the new triangle is defined by:

n∗ =
n× (v j −vi)∥∥n× (v j −vi)

∥∥
Initial experiments were promising, but sharp boundaries

were still vanishing at a relative early stage. Therefore we further
pronounced the boundary protection by applying a scale factor
f to the quadric. Therebȳv is even more attracted by the bound-
ary, which leads forf = 1000 to the results shown in Fig. 3. The
boundaries of the object are preserved even at a very high level
of compression, e.g. when the original mesh of 1250 vertices is
reduced to only 8 vertices. In comparison, the original algorithm
cannot preserve the shape of the object, already at a simplifica-
tion level of 100 vertices the approximation is very coarse.

The “invisible” surface is not rendered, but otherwise not dif-
ferent from the other surfaces. Thereby this boundary protection
method can be integrated into the algorithm without major mod-
ifications.

We applied the final algorithm to biological data sets. Three
flat shaded isosurfaces of the CCT chaperonin [9], [18] are
shown in Fig. 4. The first picture shows the initial isosurface
generated by the marching cube algorithm (12,835 vertices).
Then a simplified isosurface of only 2000 vertices - a reduction
of about 86 percent regarding the original surface - is drawn,
that clearly preserves most of the detail information. Although
the overall appearance of the third picture is quite coarse (98%
compression), one still can detect the most important features of



Fig. 4. Isocontour of the CCT chaperonin - 12,835 vertices, 2,000 vertices, 200 vertices

the surface (for example the eight peaks at the front and back
seam of the cylindrical structure).

B. Progressive Encoding

The algorithm can produce meshes with an arbitrary number
of vertices by iteratively applying the vertex contraction step.
In a real-time environment the simplification procedure has to
be applied as pre-processing step in order to allow an instanta-
neous adaption of the mesh complexity to the modeling situa-
tion. Since storingn meshes would lead to an excessive mem-
ory consumption, we combine the algorithm with the progressive
mesh data structure proposed by [7]. In his algorithm not only
the simplified version of a mesh is stored, but also the vertex
contraction steps that led to the coarser model. The benefit is,
that one cannot only reconstruct the original mesh, but also all
intermediate stages, without storing the meshes explicitly.

An initial meshM̂ = Mn can be simplified into a coarser mesh
M0 by performing a sequence of vertex contraction operations:

Mn

ψn



ψ−1

n

Mn−1

ψn−1



ψ
−1
n−1

...
ψ1



ψ
−1
1

M1

ψ0



ψ
−1
0

M0

with ψk(Mk) = Mk−1 (vertex contraction) andψ−1
k (Mk−1) =

Mk (vertex split),k ∈ {1, ...,n}. By performing these steps we
can simplify or refine any meshMk and reach thereby any other
version of the meshMl .

To perform the operationψk and it’s inverseψ−1
k one has to

build a data structure that can be traversed easily and at the same
time is as compact as possible. For the vertex contractionψk we
store only the indexes of the vertex pair(vi ,v j) and the coordi-
nates of the new vertex̄v. The inverse operationψ−1

k is more
complex, as two new vertices are generated whose relationship
to the existing and new triangles has to be specified.

To keep the progressive mesh data structure compact we en-
code the data in a concise way. Storing a difference vector be-
tween two vertices has the benefit that only relative small num-
bers have to be encoded, which makes more efficient use of the
limited range of standard precision floating point variables. For
the contractionψk we assume that̄v = vi + t, so that we only
have to encode the difference vectort. As v̄ representsvi in the
new mesh, we also avoid storing another vertex index.

The encoding of the splitting stepψ−1
k is more memory in-

tensive. Again we encode one vertex of the splitting pairvi as

a difference vectorvi = v̄+ t. But in addition one also has to
maintain two triangle lists. The first list stores the indexes of the
triangles, affected by the splitting of̄v→ (vi ,v j). As vi features
the vertex index of̄v, nothing changes for the triangles that have
vi as a vertex. One only has to include triangles indexes in the
list that are defined byv j . On average a vertex is part of six
adjacent triangles, but as two of them are new triangles and are
included in the next list, we have to store in the first list on aver-
age four indexes. The second list administers the indexes of the
new triangles, which are two on average.

On average one has to store nine floating point and eight inte-
ger variables for each combined split and contraction step. Since
the described data structure is so compact, todays graphics work-
stations can hold very large meshes with more then 100,000 ver-
tices in main memory for an interactive adaptive simplification.

C. Adaptation

Preprocessing the mesh in the above described way enables
us to select the level of detail according to an external measure.
In our application we adjust the number of verticesvcnt dynami-
cally according to a target measurerg and actual measurerc:

vcnt := vcnt−s·vcnt ·
rg− rc

rg
if rc < (−c) · rg

vcnt := vcnt +s·vcnt ·
rg− rc

rg
if rc ≥ (−c) · rg

In a pure visual rendering scenario a natural measure would
be the current FPS rate. By selecting a target FPS rate, the user
can balance the interactivity and the detail level of the render-
ing. As described above, the temporal bandwidth of the human
tactile sensoric system is much higher than of the visual system.
Therefore the level of detail of the visual rendering is adjusted
such that the consumed processor performance still allows high-
quality haptic rendering. In our applicationrg and rc are the
target and the actual force-update rate.

D. Results

We performed several test docking sessions to investigate the
practical properties of the described approach. A monomeric
structure (protein data bank entry 2REC) sampled by 200 code-
book vectors was docked into a volumetric map of RecA heli-
case [19]. In Fig. 5 the plot of the recorded FUS rate is pictured.



Curve C represents the first test session, where the standard ren-
dering without adaptive mesh simplification was used. The FUS
rate oscillates around 550, which is a relative low value where
only a limited quality of the haptic rendering can be achieved.
Curve B represents a test session where the adaptive simplifi-
cation with a goal FUS rate ofrg = 800 was used. Clearly the
actual FUS raterc deviates only insignificant fromrg. Almost
the same behavior can be observed at curve A whererg with a
value of 1200 was used. In this case the computer performance
was exhausted, as it was impossible to achieve higher force re-
calculation rates - even in absence of visual rendering.

With the proposed method we were able to double the FUS
rate and thereby a fully satisfactory haptic rendering was pos-
sible. To increase the FUS rate the adaption had to reduce the
complexity of the triangular mesh significantly by almost 72%,
but the visual representation was still sufficient as can be seen in
Fig. 6.
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Fig. 5. Force recalculation rate during interactive docking session - curve A w/o
adaption, curve B withrg = 800, curve C withrg = 1200
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Fig. 6. RecA helicase isosurface rendered with (a) 10140 and (b) 2776 triangles

After these positive results we tested how the adaption would
react on the influence of an external CPU load. Therefore an-
other program was executed during an interactive docking ses-
sion. The program performs random-number based calculations
in order to consume CPU performance. Again we tested the
behavior of the standard approach without adaptation. In Fig.
7 one can observe that in this case the force recalculation rate
drops in presence of the background process down to about 250
FUS. Although the force update rate oscillates more noticeable
when the additional process is present, the adaptive visuo-haptic
rendering method - shown in Fig. 8 - is successful in maintaining
a high force update rate nearrg.
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Fig. 7. Standard algorithm under influence of an external CPU load
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Fig. 8. Adaptive visuo-haptic rendering under influence of an external CPU load

III. V IRTUAL REALITY SETUP

The adaptive visuo-haptic docking molecular approach was
integrated in a Virtual Reality environment. Our VR setup is
a self-built, low-cost back-projection system (see Fig. 9), em-
ploying polarization filters and inexpensive polarized glasses for
stereoscopic viewing. Two DLP projectors ensure an excep-
tional brightness of the image, which is projected to a polar-
ization preserving screen. A system of two mirrors fold the
light-path, reducing the distance required between the projectors
and the screen when using back-projection. An electro-magnetic
tracking system measures the position and orientation of up to
four sensors, whereby one sensor is attached to a pair of glasses
to determine the viewers position and viewing direction. On run-
time the computer is able to adjust the 3D projection according
to the users standpoint and thereby gives the impression of a sta-
tionary scene.

Our setup serves as a prototype VR system for structural bi-
ology laboratories. As these research groups have to maintain
complex and expensive experimental machinery, there is typi-
cally no tendency to install a large immersive virtual environ-
ment like a CAVE [5]. The system presented here is inexpensive
and also compact - it has the footprint of a standard cubicle.
Still it offers full interactive, head-tracked, stereoscopic imaging
like a conventional VR environment and a haptic device which
delivers kinesthetic feedback for multi-modal user interaction.
For the haptic rendering we use a kinesthetic device, a SensAble
Phantom 6DOF [15], which offers full force- and torque feed-
back and sensors.



Fig. 9. Virtual Reality System

IV. SUMMARY AND CONCLUSION

We have described an interactive system for the multi-
resolution docking problem in structural biology. The initial
idea of using haptic rendering for the exploration of the cross-
correlation coefficient “landscape” was implemented and com-
bined with an immersive visualization system. The challenge
of such a combination lies in the real-time nature of both hap-
tic and visual rendering. Since the haptic rendering has higher
performance requirements than the immersive visualization, we
decided to reduce the complexity of the visual rendering during
a critical load situation. This is done by a mesh simplification
algorithm that was modified to deliver better support for our tri-
angular models. In addition the final algorithm was embedded in
a progressive mesh data structure to provide adaptive rendering
capabilities. The quadric error metric was then coupled to the re-
calculation rate of the kinesthetic feedback in order to prioritize
the haptic rendering quality.

Our approach cannot guarantee under all circumstances to sta-
bilize the FUS rate precisely atrg, as there is in principle no di-
rect relationship between the visual and haptic rendering. How-
ever we can measure the indirect performance loss of the kines-
thetic feedback in form of the FUS rate, caused in part by the
visualization. In practice this load balancing scheme proved to
be quite stable and was also able to cope with external CPU load.
Maintaining a high force-update rate enables us to target macro-
molecular assemblies, whereby in the previous approach the vi-
sualization of these large complexes would have dominated the
usage of the computing resources.

In the future we would like to enhance the human-computer
interaction mechanisms. In order to support the construction
of large assemblies, a visual browser of the available building-
blocks would be beneficial during the docking session. The
load-balancing of the visuo-haptic rendering enables the con-
struction of very large (millions of atoms) biomolecular com-
plexes by modeling the “exterior docking” of a probe molecule
to alreadyplaced subunits. A successive difference mapping ap-
proach can be applied to provide for a soft repulsive force in
the presence of steric hindrance among placed structures. How-
ever, to implement this in the current conceptual framework, the

load-balancing is critical, since the complexity and size of the
building blocks is frequently changing when they are selected
for the matching by the user. Therefore, the real-time character
of the haptic rendering will facilitate the future implementation
of novel concepts in interactive 3D modeling.
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